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Bayesian analysis of diffusion-driven multi-type epidemic models with application to COVID-19
Lampros Bouranis, Nikolaos Demiris, Konstantinos Kalogeropoulos, loannis Ntzoufras

‘We consider a flexible Bayesian evidence synthesis approach to model the age-specific transmission dynamics of COVID-19 based on daily age-stratified mortality counts. Tt
transmission rates in populations containing multiple types of individual are reconstructed via an appropriate dimension-reduction formulation driven by independent diffusion |
key epidemiological parameters. A suitably tailored Susceptible-Exposed-Infected-Removed (SEIR) compartmental model is used to capture the latent counts of infections ant
in transmission influenced by phenomena like public health interventions and changes in human behaviour. We analyze the outbreak of COVID-19 in Greece and Austria and
model using the estimated counts of cumulative infections from a large-scale seroprevalence survey in England.
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Motivation

> Large-scale seroprevalence studies to estimate actual number of infections

m Severe under-ascertainment (Ward et al., 2021), varying in time and across
countries.

m Level of under-ascertainment depends on national testing and tracing policies,
testing capacities and impact of false positives under different regimes.

m Only a proportion of infections detected and reported at the early stages of
the pandemic (Li et al., 2020).

» Methods that rely on reported counts of infections expected to yield biases
in the inferred rates of transmission.
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Motivation

» Challenges of under-ascertainment of COVID-19 infections and presence of
heterogeneity in type, relevance, and granularity of the data

m Seminal paper by Flaxman et al. (2020) and its extension to multiple age
groups by Monod et al. (2021).

» A Bayesian evidence synthesis approach for the analysis of COVID-19 data

m Infer the true number of infections using age-stratified daily COVID-19
attributable mortality counts.

m Learn the age-specific transmission rates.
m Reconstruct the epidemic drivers from publicly available data sources.
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Introduction

» Allow for indirectly observed infections (Chatzilena et al., 2022).

> Age-stratified transmission model accounting for presence of social
structures.
» Target the transmission rate matrix process:
m Dimension increases quadratically with # of age groups.

m Offer a dimension-reduction formulation projecting to latent diffusion
processes.

» Desirable characteristics
m Natural decomposition into underlying biological and social components.
m Further evidence synthesis utilising information from contact surveys.

m Driven by diffusion processes — capture temporal evolution of transmission
rates & extrinsic environmental factors (NPls and climatic changes).

m Facilitates model determination at a latent level, performed here by
appropriate model expansion.
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Introduction

» Integration of multiple data sources, publicly available across countries:

m Age-stratified daily COVID-19 attributable mortality counts and
laboratory-confirmed COVID-19 infection counts.

m Contact surveys.
m Age distribution of the population.

» Contact survey data used to delineate potential identifiability issues (Britton,
1998) at the unobserved infection rate level when those rates are
decomposed in their social and biological component.

» Uncertainty in contact structure is expressed via suitable prior distributions.

Lampros Bouranis 6/30



Model overview

Parameter

period

3 ‘.I
-3
O 2

volatility

to-d

Brownian motion

Contact matrix

Group-specific
nfection-fatality ratio

th

distribution




Diffusion-driven multi-type transmission model

> Let y; o be the number of observed deathsonday t =1,..., T in age
group . € {1,...,A}. A given infection may lead to observation events
(i.e deaths) in the future.

5, Population stratified into o € {1,...,A} age groups
Og&%\ Deterministic SEo/ R compartmental model

bl

Transmission between (o, o) € {1,...,A}? Stochastic extension - Brownian motion
Ma,or (1) = B, (t) - Covor Xo,0 (1) | Xoar(f—1),0qar ~ N(xo o0 (t—1),05,,)
= Biological x Social component og Boor l‘) = Xo,o 1‘)

Force of infection

., Estimated infections
A (I?L.,tJrlg‘t) infec t o
Aa(t) = o/ =1 m(x,(x’(t) N, ATG® = Ji_1TEzsds
r"'s"J Over-dispersed count model Expected deaths
M Yt ~ NegBin (.o, Et.o) 0o = IFRg % 22;11 htfsAlgfgC
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Transmission rate matrix process

» Transmission between different age groups (o, o) € {1,...,A}%:

moc,oc’(t) = B(tm : Coc,oc’

= Biological x Social

» Diffusion process for modeling B?‘O‘/ — Key advantages:
m A data-driven approach; no need to specify the shape of change.
m Tackles non-stationarity in the data.

m Capture features like behavior changes, preventive measures, seasonal
effects, holidays, etc.

B Assess & interpret the evolution of transmission wrt mitigation strategies.
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Transmission rate matrix process

» What we propose:

m Independent diffusions to log(B] '), log(B2?),. .., log(B#*) with volatility
parameters Gy ¢, 0 € {1,...,A} [parsimony and interpretability]:

!
m&"ﬁ“ﬂ(f) = B?m Coor = ngoc Coar-

m Viewed as factor analysis, offering dimension reduction from elements of
transmission rate matrix process to the Brownian motions $¢* for
ac{l,..., A}

m Appealing feature — helps separate the contact matrix.

MBM(t):

» Further reduction of the dimension of m;

/
2%%(0 B?a : Coc,oc’ = Bt . Coc,oc’-

» SBMis a nested model to MBM.
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Observation process

» Denote the new COVID-19 attributable deaths occurring in day
t=1,...,Tandagegroup ot =1,...,Aby y; q.

» A given infection may lead to observation events (i.e deaths) in the future.
Establish a link between y; o and the expected number of new infections
via the function (Flaxman et al., 2020; Monod et al., 2021):

—_— t_1 .
Ora = IFRa x Y h_ s ATEC.

s=1

» We link d; o under the proposed model to y; o through an over-dispersed
count model (Birrell et al., 2021). The log-likelihood of the observed
deaths is given by

T A
gDeaths y | q) — Z Z ogNegBln Yto | dtocaE;tOt)

where &; o = ¢ , such that E[y; o] = di.q and V]y o] = dro(1+9).



Observation process

» Infection-to-death distribution
m Assumed to be Gamma distributed with mean 24.2 days and coefficient of
variation 0.39 (Flaxman et al., 2020; Monod et al., 2021) and is given by

h ~ Gamma(6.29,0.26).

» Infection fatality rate = deaths among all infected individuals
m REal-time Assessment of Community Transmission-2 (REACT-2) national
study of over 100,000 people in England (Ward et al., 2021): estimated
total number of SARS-CoV-2 infections since start of the epidemic until

mid-July 2020.

Age group 15-44 45-64 65-74 75+
IFR (%) 0.03 052 3.13 11.64
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Parameter estimation - challenges

» Non-linear ODE system + SDE = hypo-elliptic diffusion — Intractable!

» Data augmentation framework of Dureau et al. (2013):
m Latent sample path x of the diffusion is infinite-dimensional.
m Indirectly observed through the time evolution of the disease states.
» Decrease dimensionality stochastic process:
m Split study period t =1,..., T into k =1,..., K batches and model x,.
m Time-discretization via Euler-Maruyama approximation of x,.
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Parameter estimation - challenges

» Estimation of the volatilities oy o, 00 € {1,...,A}.

» Longer time horizon — burden of ODE solver increases:
m Numerical approximation via the Trapezoidal rule.

» Posterior sampling
m Dynamic Hamiltonian Monte Carlo algorithm (Betancourt, 2018).
m Can handle high-dim © and posteriors with weird shapes.

m Volumes of data T = cost of solving ODEs 1 (Birrell et al., 2021; Gosh et al.,
2022): need for further developments.
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Greece — SBM model
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Greece — SBM model
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Greece — SBM model
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Greece — Model expansion

» The SBM model is not flexible enough to accommodate for age-specific
trends in SARS-CoV-2 transmission.

» Assessment of the fidelity of the SBM model to the data at a latent level:
prior-data conflict at a latent level.

» Expand the SBM model to the MBM model in the spirit of Gustafson (2005)
and inspect the effect on the contact survey data.
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Greece — Model expansion
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Greece — Model expansion

Effective contact rate
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Greece — Model expansion
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Greece — Model expansion

Table 1: Model determination. DIC: Deviance information criterion (Spiegelhalter et al.,
2002); ppic: estimated effective number of parameters using the DIC; LOOCV: Pareto
smoothed importance sampling leave-one-out cross-validation information criterion
and accompanying standard error (Vehtari et al., 2017) ; pjo0: estimated effective
number of parameters using LOOCV and accompanying standard error.

Model DIC ppic LOOCV (se) Pio (se)
SBM 2506.8 16.3 2507.4 (56.0) 15.9 (1.2)
MBM 2506.6 26.4 2506.2 (57.3) 24.6 (1.6)

Lampros Bouranis 22/30



MBM External validation (England)

2e+06

1e+06

0e+00

2e+06

1e+06 F

Cumulative cases

0e+00
1e+06

5e+05

0e+00

cfS
o

Epidemiological Date

o
g
o

B cumuiative reported cases

== Median Estimated cumulative cases === 50% Crl Estimated cumulative cases === 95% Crl Estimated cumulative cases




Greece — Age-specific infections (MBM
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Greece — Effective reproduction number (MBM)
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Greece — Age-specific reporting ratio (MBM)
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Exchangeable SDEs

» A Bayesian multi-task learning framework.

» Exchangeable GBMs - fall within the broad family of multi-output Gaussian
Processes (GP).

» Multi-output GPs implemented for a simpler class of Bayesian infectious
disease models (Seymour et al., 2022).

» Each Brownian motion path is drawn from an underlying population.
» Can be extended to include alternative Gaussian Processes to the GBM.
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Exchangeable SDEs

» A-priori belief - shared structure across tasks.
» A Bayesian hierarchical model for:
m Capturing cross-dependencies between tasks.
m Introducing a natural interpretation based on the underlying mean stochastic
process.
» Exchangeable GBMs improve predictive ability of the model compared to
independent GBMs.
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Concluding remarks

» Epidemic model driven by the distinct features of COVID-19 data:

m A data-driven approach to inferring the mechanism governing COVID-19
transmission.

m Diffusion processes that are a-priori independent.

m Assess fidelity to the data at a latent level and resolve corresponding
prior-data conflict via model expansion.

» Advantages:
m Synthesis of multiple data sources, publicly available across countries.

m Remove need for additional information on timing of interventions and
hypotheses about their impact on transmission.

m Model allows policymakers to assess effect of NPIs on each age group.
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Concluding remarks

» Limitations:
m Proposed hierarchical model better suited to the pre-vaccine era.

m Variations in reporting procedure of deaths and mortality definitions across
time and countries.

m Parametric assumptions for infection-to-death distribution.
m Account for hospital-acquired infections.
m Time-invariant age-stratified IFRs.
» Moving forward:
m Age-stratified IFRs & integration of further healthcare surveillance data.

m Exchangeable diffusion processes: shared structure between dynamic
transmission rates for individuals of different age groups.
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Data sources and definitions

Table 2: Data sources and definitions.

Data type

Description

Source Reference

Mortality

Daily number of new deaths by
age group according to the date of
death, tested positive for COVID-
19. For England, hospital-only.

NHS, England; Hel- National Health Service England
lenic National Public (2022); Hellenic National Public
Health Organization Health Organization (2022)

Infections

Daily number of new cases by age
group and specimen date

NHS, England; Hel- UK Health Security Agency (2022);
lenic National Public Hellenic National Public Health Or-
Health Organization ganization (2022)

Age distribu-

tion

Age distribution for a given year,
broken down by 5-year age bands
and gender

United Nations; Office United Nations: Department of Eco-

for National Statistics, nomic and Social Affairs: Population

UK Division (2020); Office for National
Statistics (2022)

Contact
trix

ma-

Rate of contacts between age
groups

Prem et al. (2021)
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Diffusion-driven multi-type transmission model (1)

» Age-stratified deterministic Susceptible-Exposed-Infected-Recovered
(No = St + EY, + B34 + Y + I3, + Rf') compartmental model
m Force of infection:

ol (i)
Ao (1) = B Coot ~——2 |, a=1,... A
o) = B Y | G
m Non-linear system of ODEs:
Vdslx
S = ha(t)SE,
dEY dEY
g = ha()SP—tEY, ot =T(E — ERY)
i e
< = TES =, =1 — lgf,) (1)
dRY
o =V
AT = [L4TESds

» Mean Incubation period [de = 2/7]; Mean Infection period [d) = 2/7].
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Prior distributions

» Initial conditions: ty = simulation start; most individuals assumed to be
susceptible and are distributed across A according to Ny. The number of
people in the exposed compartments at fy is controlled by a parameter =,
and also distributed according to Ny. Other compartments are set to 0.

Table 3: Model parameters with assumed prior distributions or fixed values.

Symbol Description Prior source

Transmission model

b1 Initial proportion of exposed (at fy) Beta with E[x] = 0.1, V[r] = 0.05-E[r]. Based on Hauser
et al. (2020).

Fij Entries of the contact matrix F Half-Normal with E[Fj;] = F;, V[r] = (0.05- F;)? i,j =
1,...,A

Xo Brownian motion at f Normal(0,5%)

X1 Brownian motion at t Normal(0,42)

Xt Brownian motion Xt | xt—1,62 ~ Normal(x_1,02), t=2,...,T.

Oy Volatility of the Brownian motion ~ Half-Normal(0,4).

Observational model

(o] Negative Binomial over-dispersion Exp(0.2). Based on Birrell et al. (2021).

Parameters assumed known

ﬁa Infection-fatality rate Based on Ward et al. (2021).

de Mean Incubation period 3 days. Based on Liu et al. (2020).

d Mean Infection period 4 days. Based on Liu et al. (2020).
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Effective Reproduction number

> R,eff = avg # of secondary infections a case infected at time t would
generate, accounting for the finite population size and potential immunity in
the population (Davies et al., 2020; Knock et al., 2021).

» The next-generation matrix was calculated as

Sa(t)
Na/ '

NGMa7a/(t) = m(x7(x/ (t)d[

» R = absolute value of the dominant eigenvalue of NGM(t).
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Age-specific reporting ratio

» Combine daily laboratory-confirmed COVID-19 infections with estimated
daily number of infections in the population.

» Age-specific posterior median of the number of infected individuals in the
population at time t — L.

» Allows for a reporting delay of L days between infection and report.

» Laboratory-confirmed infections which are reported at time t denoted by
Ainfec,rep
to -

» Estimated age-specific daily reporting ratio for o € {1,..., A} expressed by

infec,rep
At,oc
A infec,pop *
Ath,(x

Ito =

We considered a time delay between infection and report (L) equal to 6
days; a time-varying spline-based smoother was applied to 7 ¢ via
generalized additive model smoothing (Wood et al., 2016).
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