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Introduction: The problem

o Motivation:

v" Quick evaluation of the local tracing partnerships (LTPs) introduced
by England’s NHS Test & Trace (TT) programme to improve tracing
of Covid-19 cases and their contacts.

v" LTPs main task: trace cases resident in local authorities not
successfully traced by TT.

v" Question: impact of LTPs on the effectiveness of TT.
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e The statistical problem:
v' Estimation of causal effects of intervention (LTPs introduction)
based on observational data; judge the effectiveness of TT in terms
of four outcomes measured daily.
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o Motivation:

v" Quick evaluation of the local tracing partnerships (LTPs) introduced
by England’s NHS Test & Trace (TT) programme to improve tracing
of Covid-19 cases and their contacts.

v" LTPs main task: trace cases resident in local authorities not
successfully traced by TT.

v" Question: impact of LTPs on the effectiveness of TT.

e The statistical problem:
v' Estimation of causal effects of intervention (LTPs introduction)
based on observational data; judge the effectiveness of TT in terms
of four outcomes measured daily.

e Challenges:
v' Measurements for multiple sample units (local authorities) at
multiple time points.
v Mixed (continuous and discrete) outcomes; some of those with

limited amount of information (e.g. low counts).

v’ Absence of randomisation in intervention wrt time and units. >



Introduction

% cases completed

# contacts elicited

Outcomes of

(a) Case completion

interest

3
8]
S
8 =
]
E
5
81
=
E
S
o 8
<2 @
3
&
a
8
o | 8
<
Non-LTP average
—— LTP average
oA Example unit
T T T T
2020-07-01 ~ 2020-08-16  2020-09-30  2020-11-15
Date
(c) Number of contacts
=
3
Non-LTP average
o | LTPaverage
3 Example unit
5
3 3
g 3
-3
£
84 8
) ]
3
8
84 §
< 8
8
)
=
el
o AN s
T T T T
2020-07-01  2020-08-16  2020-09-30  2020-11-15

Date

100

(b) Timely case completion

\
‘.p |

A I R
g / ¥,
T 4
® W n\{‘ ,u' i »‘ i iy
‘ Ay i Wil f ¥
f \ l” V
g Hey ‘\”
{
R |
! W
2
3 4
4]
L]
o I
& I
Non-LTP"average
—— LTP average
o Example unit
T T T
2020-11-15
Date
(d) Contact completion
1)
3
El
g i
8 {
A
3 L v"\\h\‘)\/\» ey,
)
5
)
&
Non-LTP average
—— LTP average
° Example unit
T T T
2020-11-15

Date



Introducti Contribution

e Tackle limitations of causal factor analysis (“matrix completion”):
v Extension to a multivariate factor analysis model.
v Joint modelling of mixed outcomes to increase statistical efficiency.

v" Use Bayesian methods to quantify uncertainty for the causal effects.

e Construction of a bespoke MCMC algorithm.
v’ Dealing efficiently with problems caused by non-identifiability of
factor models by customising modern samplers.
v Rely on data augmentation to facilitate sampling from the full

conditionals.



Notation and assumptions

e Assume D; continuous, D> binomial and D; count outcomes.

e Notation for binomial outcomes; similarly for remaining outcomes.
e nj:: # of new cases in unit / and day t

kir: completed cases out of n;

pit: probability of case completion
N units total, Ny controls. For i > Ny, T; is the last day before LTP
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e nj:: # of new cases in unit / and day t

kir: completed cases out of n;

pit: probability of case completion
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e Potential outcomes framework (Holland, 1986)

e Treatment free outcomes pfto), ngf) and k,.(to) (all i and t)
e Outcomes under LTP p{", n{!) and k" (i>Niand t > T)

it

{n(l) k.(l)} i>N;and t > T;

e Hence, data are:  {ni, kir} = o
{n,(.to), k,.(to)} otherwise

e y;: and z; denote continuous and count outcomes respectively.



Causal effects

For i > N;y and t > T;, we are interested in estimating

e Effect of LTP on case completion probability

B =) —

e The total number of additional cases completed thanks to LTP

1 7(0
Vit = kl(t) 7ki(t)’

where l;,-(to) ~ Bin(n,(-tl), pfto)).



Causal effects

For i > N;y and t > T;, we are interested in estimating

e Effect of LTP on case completion probability

B =) —

e The total number of additional cases completed thanks to LTP

1 7(0
Vit = kl(t) 7ki(t)’

where l;,-(to) ~ Bin(n,(-tl), pfto)).

o _ 0

& . unless
0 .
— y,.(t ) for continuous outcomes.

For a count outcome (e.g. # contacts), we take d;; =

there is an offset; oy = yl.(tl)



Causal inference as a missing data problem

To estimate causal effects we need to impute the counterfactuals p(o)
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Imputation through latent factors

Normal outcomes as an illustration:

0
YO =0T xi + AT f 4 e
Some comments:

e The loadings A; € R’ and factors f, € R’ are unobserved.

e We fit this model discarding all post-intervention data; for i > N
and t > T;, we estimate

~(0 A~ N,
O — 3T xi + AT F;

e Implicit causal assumption: x;; and A; account for
(observed/unobserved) confounding of the causal effects (Xu, 2017).



Imputation through latent factors

Normal outcomes as an illustration:

0
YO =0T xi + AT f 4 e
Some comments:

e The loadings A; € R’ and factors f, € R’ are unobserved.

e We fit this model discarding all post-intervention data; for i > N
and t > T;, we estimate

~(0 AT AT E
)’;(t):n Xie + A f
e Implicit causal assumption: x;; and A; account for

(observed/unobserved) confounding of the causal effects (Xu, 2017).

e Now we can estimate the causal effect ajy = y,-(tl) = y,(f).



A multivariate factor analysis model

For unit /, day t, and outcome d, we assume a factor analysis model

0
Y ~ N (ptieg, 07, priea = A] Foa + 1] g,

k,-(t?} ~ Bin (Nitg, pita) , logit(pia) = A/ 8ea + TIZdXin
20 ~ NegBin (witgqiraly t, (1 +€4) ), log(qied) = Af Brg + 113 Xt

- fid, 8rd, hta € R unobserved factors; A\; € R? common across
outcomes factor loadings for unit i; x;; € R” covariates not affected
by the intervention; M1 4,724, M3,4 regression coefficients.

- Xx;z and A; control for potential observed and unobserved

confounding respectively.



Prior on factors

e For normal outcome d, we a priori assume that fiy; ~ N(0, ¥jq),
j=1,...,J

e Analogous for binomial and NB outcomes.

e To allow loadings to affect any subset of outcomes, we introduce
variables M; for the variance of factors fiqj, gtqj and hygj, e.g.

Loading | Normal Binomial Neg. Binomial | M;
j=1 | 11 ~ Unif0,1] Yo =1 13 ~ Uni[0,1] | 2
Jj=2 | 4o ~Uni[0,1] 4 ~ Uni[0, 1] o3 =1 3
j=3 Pz =1 P32 ~ Uni[0,1] 33 ~ Uni[0,1] | 1
j=4 Y =1 Va2 ~ Uni[0,1] 443 ~ Uni[0,1] | 1

10



Prior on loadings

Uncertainty in J: start with J large, let data determine how many are
needed. We follow Gao et al, (2016):
1 1
Xj ~N(0,— —1),  ¢; ~ TPB(0.5,0.5, e 1),
i J

1
¢ ~ TPB(0.5,0.5, = —1),  p~ TPB(0.5,0.5,)
P

TPB: three parameter beta distribution

TPB density witha =b = 0.5
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Bayesian estimation

We draw samples from the posterior of the causal effects i, Bitd, Yita by
using Metropolis-within-Gibbs that targets

({A,, {f;d}d 1} {{gtd}t 172, d} ; , {{htd}tT:l ,7]3,d}j; ,0 | data) ,

where

{{{ftd}fl,{,d}} 162 (o 6o 2o} }

and

D. D, D, n "
data = {{{yitd}dil s {Kitd, Nitd } 421 { Zitd s Witd } 921 7Xiz}t 1} .
=1) iz

o Problem: Non identifiability of latent factors, AFT = AQQ'F' (Q
orthonormal) as well as sign/label-switching problems make popular
schemes (e.g. HMC/MALA) to fail.

12



Bayesian estimation

We draw samples from the posterior of the causal effects i, Bitd, Yita by
using Metropolis-within-Gibbs that targets

({A,, {f;d}d 1} {{gtd}t 172, d} ; , {{htd}tT:l ,7]3,d}j; ,0 | data) ,

where

{{{ftd}w{,d}} 162 (o 6o 2o} }

and

D. D, D, n "
data = {{{yitd}dil s {Kitd, Nitd } 421 { Zitd s Witd } 921 7Xiz}t 1} .
=1) iz

e Problem: Non identifiability of latent factors, AFT = AQQ*FT (Q
orthonormal) as well as sign/label-switching problems make popular
schemes (e.g. HMC/MALA) to fail.

e Solution: We employ the (simplified) manifold MALA with a state
dependent proposal covariance matrix and we focus on facilitating
computations. 12



Data augmentation to facilitate computations

e We introduce wig ~ PG(niw,0); the binomial likelihood writes

2
Witd Kitd /\T T
7 (Kied | Nieds Ni, Btd M2,d s Xit, Witd) X EXP § — — Ai 8td — Mo,aXit :

2 \ Wi

where Kjtg = kitg — nita/2 (Polson et al., 2013); drawing gi¢ and 12,4 is
performed with Gibbs steps.
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Data augmentation to facilitate computations

e We introduce wig ~ PG(niw,0); the binomial likelihood writes

2
k Witd Kitd T T
7 (Kied | Nieds Ni, Btd M2,d s Xit, Witd) X EXP § — — Ai 8td — Mo,aXit :

2 \ Wi
where Kjtg = kitg — nita/2 (Polson et al., 2013); drawing gi¢ and 12,4 is
performed with Gibbs steps.

e For count outcomes we introduce L;;y ~ CRT(Zjtd, WitaQitd /Ea); Zhou and
Carin (2015) show that

&7 Lira!|S(Zied, Lita)|
1+ £g)7d (log (1 + &a)) e

x Pois (Litd; il log (1 + fd)) .

7T (Zitd7 Litq ‘ Witd , Qitd Xihfd) = (

v Derivatives wrt gjrg = exp ()\,T hig + n;dx,-t) require less
computational cost compared to the (non-aumented) NB likelihood.
v’ Gibbs step to update Ljz4.

- Check Samartsidis et al., 2021 for technical details.
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Real data analysis




*Qur simulation study shows that joint modelling outperforms
univariate models in detecting the intervention.
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*Qur simulation study shows that joint modelling outperforms
univariate models in detecting the intervention.

e N =181 units, T = 138 time points, N; = 63 units did not
introduce LTP during the study period.

e Three binomial outcomes:
v Case completion: proportion of cases completed out of new cases.
v' Timeliness: as above, within 48 hours.

v Contact completion: proportion of contacts completed.

e One count outcome:

v' Number of contacts elicited from the completed cases

14



Case completion: causal effects

Point estimates (posterior means) of 8 and ~;: are shown below:
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Both (5;; and ~;; are positive on average. However, there is substantial

heterogeneity. This is also true for the remaining outcomes
15



Case completion: average unit effects

For treated units, we define the average effects as 3; = ++ ZtT:ﬂ+1 Bit

1 T . : : .
and v; = T Zt:T;+1 ~it. Posterior summaries are shown below:

Bi Y
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-0.2

UTLA ID UTLAID
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Discussion

New method for causal inference with time-series observational data

e Can deal with outcomes of mixed type.
e Increases efficiency by jointly modelling multiple outcomes.

e Uncertainty quantification building efficient Bayesian estimation

techniques.

Evaluation of LTPs

e On average, LTPs improved case completion and timely case
completion.

e LTPs might have had an adverse effect on # of contacts elicited.

e Considerable heterogeneity in the estimates of the causal effects.
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