

A Bayesian multivariate factor analysis model for causal inference using time-series observational data on mixed outcomes

Angelos Alexopoulos

Statistical modelling of epidemic outbreaks,

May 5, 2023

Co-authors

- MRC Biostatistics Unit
 - Pantelis Samartsidis
 - Shaun R. Seaman
 - Daniela De Angelis
- UK Health Security Agency
 - Abbie Harrison
 - Gareth J. Hughes
 - Charlotte Anderson
 - Andre Charlet
 - Isabel Oliver
 - Daniela De Angelis

Introduction: The problem

• Motivation:

- ✓ Quick evaluation of the *local tracing partnerships* (LTPs) introduced by England's NHS *Test & Trace* (TT) programme to improve tracing of Covid-19 cases and their contacts.
- √ LTPs main task: trace cases resident in local authorities not successfully traced by TT.
- ✓ Question: impact of LTPs on the effectiveness of TT.

Introduction: The problem

Motivation:

- ✓ Quick evaluation of the *local tracing partnerships* (LTPs) introduced by England's NHS *Test & Trace* (TT) programme to improve tracing of Covid-19 cases and their contacts.
- √ LTPs main task: trace cases resident in local authorities not successfully traced by TT.
- ✓ Question: impact of LTPs on the effectiveness of TT.

The statistical problem:

✓ Estimation of causal effects of intervention (LTPs introduction) based on observational data; judge the effectiveness of TT in terms of four outcomes measured daily.

Introduction: The problem

Motivation:

- ✓ Quick evaluation of the *local tracing partnerships* (LTPs) introduced by England's NHS *Test & Trace* (TT) programme to improve tracing of Covid-19 cases and their contacts.
- √ LTPs main task: trace cases resident in local authorities not successfully traced by TT.
- ✓ **Question**: impact of LTPs on the effectiveness of TT.

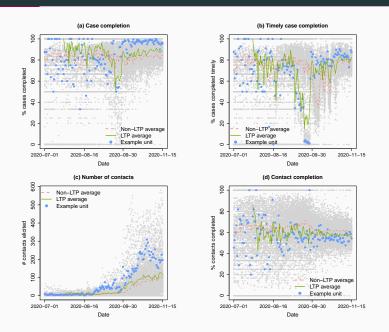
• The statistical problem:

✓ Estimation of causal effects of intervention (LTPs introduction) based on observational data; judge the effectiveness of TT in terms of four outcomes measured daily.

• Challenges:

- √ Measurements for multiple sample units (local authorities) at multiple time points.
- ✓ Mixed (continuous and discrete) outcomes; some of those with limited amount of information (e.g. low counts).
- ✓ Absence of randomisation in intervention wrt time and units.

Introduction: Outcomes of interest



Introduction: Contribution

- Tackle limitations of causal factor analysis ("matrix completion"):
 - ✓ Extension to a multivariate factor analysis model.
 - ✓ Joint modelling of mixed outcomes to increase statistical efficiency.
 - $\checkmark\,$ Use Bayesian methods to quantify uncertainty for the causal effects.
- Construction of a bespoke MCMC algorithm.
 - ✓ Dealing efficiently with problems caused by non-identifiability of factor models by customising modern samplers.
 - √ Rely on data augmentation to facilitate sampling from the full conditionals.

Notation and assumptions

- Assume D_1 continuous, D_2 binomial and D_3 count outcomes.
- Notation for binomial outcomes; similarly for remaining outcomes.
 - n_{it} : # of new cases in unit i and day t
 - k_{it} : completed cases out of n_{it}
 - p_{it} : probability of case completion
 - ullet N units total, N_1 controls. For $i>N_1$, T_i is the last day before LTP

Notation and assumptions

- Assume D_1 continuous, D_2 binomial and D_3 count outcomes.
- Notation for binomial outcomes; similarly for remaining outcomes.
 - n_{it} : # of new cases in unit i and day t
 - k_{it} : completed cases out of n_{it}
 - p_{it}: probability of case completion
 - N units total, N_1 controls. For $i > N_1$, T_i is the last day before LTP
- Potential outcomes framework (Holland, 1986)
 - Treatment free outcomes $p_{it}^{(0)}$, $n_{it}^{(0)}$ and $k_{it}^{(0)}$ (all i and t)
 - Outcomes under LTP $p_{it}^{(1)}$, $n_{it}^{(1)}$ and $k_{it}^{(1)}$ $(i > N_1 \text{ and } t > T_i)$
 - Hence, data are: $\{n_{it}, k_{it}\} = \begin{cases} \{n_{it}^{(1)}, k_{it}^{(1)}\} & i > N_1 \text{ and } t > T_i \\ \{n_{it}^{(0)}, k_{it}^{(0)}\} & \text{otherwise} \end{cases}$
- y_{it} and z_{it} denote continuous and count outcomes respectively.

Causal effects

For $i > N_1$ and $t > T_i$, we are interested in estimating

Effect of LTP on case completion probability

$$\beta_{it} = p_{it}^{(1)} - p_{it}^{(0)}$$

• The total number of additional cases completed thanks to LTP

$$\gamma_{it} = k_{it}^{(1)} - \tilde{k}_{it}^{(0)},$$

where $\tilde{k}_{it}^{(0)} \sim \text{Bin}(n_{it}^{(1)}, p_{it}^{(0)})$.

Causal effects

For $i > N_1$ and $t > T_i$, we are interested in estimating

Effect of LTP on case completion probability

$$\beta_{it} = p_{it}^{(1)} - p_{it}^{(0)}$$

The total number of additional cases completed thanks to LTP

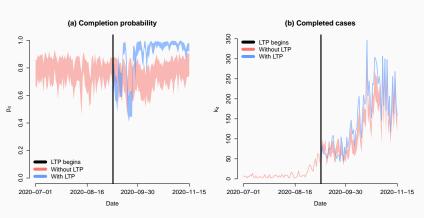
$$\gamma_{it} = k_{it}^{(1)} - \tilde{k}_{it}^{(0)},$$

where $\tilde{k}_{it}^{(0)} \sim \text{Bin}(n_{it}^{(1)}, p_{it}^{(0)})$.

For a **count outcome** (e.g. # contacts), we take $\delta_{it} = z_{it}^{(1)} - z_{it}^{(0)}$, unless there is an offset; $\alpha_{it} = y_{it}^{(1)} - y_{it}^{(0)}$ for **continuous** outcomes.

Causal inference as a missing data problem

To estimate **causal** effects we need to **impute** the counterfactuals $p_{it}^{(0)}$ and $\tilde{k}_{it}^{(0)} \sim \text{Bin}(n_{it}^{(1)}, p_{it}^{(0)})$ for $i > N_1$ and $t > T_i$



Imputation through latent factors

Normal outcomes as an illustration:

$$y_{it}^{(0)} = \boldsymbol{\eta}^{\top} \boldsymbol{x}_{it} + \boldsymbol{\lambda}_{i}^{\top} \boldsymbol{f}_{t} + \varepsilon_{it}$$

Some comments:

- The loadings $\lambda_i \in \mathbb{R}^J$ and factors $f_t \in \mathbb{R}^J$ are unobserved.
- We fit this model **discarding all post-intervention** data; for $i > N_1$ and $t > T_i$, we estimate

$$\hat{y}_{it}^{(0)} = \hat{\boldsymbol{\eta}}^{\top} \boldsymbol{x}_{it} + \hat{\boldsymbol{\lambda}}_{i}^{\top} \hat{\boldsymbol{f}}_{t}$$

 Implicit causal assumption: x_{it} and λ_i account for (observed/unobserved) confounding of the causal effects (Xu, 2017).

8

Imputation through latent factors

Normal outcomes as an illustration:

$$y_{it}^{(0)} = \boldsymbol{\eta}^{\top} \boldsymbol{x}_{it} + \boldsymbol{\lambda}_{i}^{\top} \boldsymbol{f}_{t} + \varepsilon_{it}$$

Some comments:

- The loadings $\lambda_i \in \mathbb{R}^J$ and factors $f_t \in \mathbb{R}^J$ are unobserved.
- We fit this model **discarding all post-intervention** data; for $i > N_1$ and $t > T_i$, we estimate

$$\hat{y}_{it}^{(0)} = \hat{\boldsymbol{\eta}}^{\top} \boldsymbol{x}_{it} + \hat{\boldsymbol{\lambda}}_{i}^{\top} \hat{\boldsymbol{f}}_{t}$$

- Implicit causal assumption: x_{it} and λ_i account for (observed/unobserved) confounding of the causal effects (Xu, 2017).
- Now we can estimate the causal effect $\alpha_{it} = y_{it}^{(1)} \hat{y}_{it}^{(0)}$.

A multivariate factor analysis model

For unit i, day t, and outcome d, we assume a factor analysis model

$$\begin{aligned} y_{itd}^{(0)} &\sim \mathrm{N}\left(\mu_{itd}, \sigma_{i}^{2}\right), \ \mu_{itd} = \boldsymbol{\lambda}_{i}^{\top} \boldsymbol{f}_{td} + \boldsymbol{\eta}_{1,d}^{\top} \boldsymbol{x}_{it}, \\ k_{itd}^{(0)} &\sim \mathrm{Bin}\left(n_{itd}, p_{itd}\right), \ \mathrm{logit}(p_{itd}) = \boldsymbol{\lambda}_{i}^{\top} \boldsymbol{g}_{td} + \boldsymbol{\eta}_{2,d}^{\top} \boldsymbol{x}_{it}, \\ z_{itd}^{(0)} &\sim \mathrm{NegBin}\left(w_{itd}q_{itd}\xi_{d}^{-1}, (1+\xi_{d})^{-1}\right), \ \mathrm{log}(q_{itd}) = \boldsymbol{\lambda}_{i}^{\top} \boldsymbol{h}_{td} + \boldsymbol{\eta}_{3,d}^{\top} \boldsymbol{x}_{it}. \end{aligned}$$

- $f_{td}, g_{td}, h_{td} \in \mathbb{R}^J$ unobserved factors; $\lambda_i \in \mathbb{R}^J$ common across outcomes factor loadings for unit i; $\mathbf{x}_{it} \in \mathbb{R}^P$ covariates not affected by the intervention; $\eta_{1,d}, \eta_{2,d}, \eta_{3,d}$ regression coefficients.
- x_{it} and λ_i control for potential observed and unobserved confounding respectively.

Prior on factors

- For normal outcome d, we a priori assume that $f_{tdj} \sim \mathrm{N}(0, \psi_{jd})$, $j=1,\ldots,J$.
- Analogous for binomial and NB outcomes.
- To allow loadings to affect **any subset** of outcomes, we introduce variables M_j for the variance of factors f_{tdj} , g_{tdj} and h_{tdj} , e.g.

Loading	Normal	Binomial	Neg. Binomial	M_j
j=1	$\psi_{11} \sim \mathrm{Uni}[0,1]$	$\psi_{12}=1$	$\psi_{13} \sim \mathrm{Uni}[0,1]$	2
j = 2	$\psi_{21} \sim \mathrm{Uni}[0,1]$	$\psi_{22} \sim \mathrm{Uni}[0,1]$	$\psi_{23}=1$	3
j = 3	$\psi_{31}=1$	$\psi_{32} \sim \mathrm{Uni}[0,1]$	$\psi_{33} \sim \mathrm{Uni}[0,1]$	1
j = 4	$\psi_{ extsf{41}}=1$	$\psi_{42} \sim \mathrm{Uni}[0,1]$	$\psi_{43} \sim \mathrm{Uni}[0,1]$	1

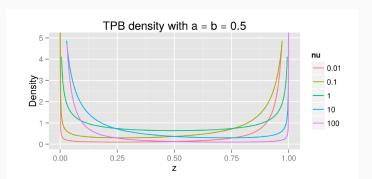
..

Prior on loadings

Uncertainty in J: start with J large, let data determine how many are needed. We follow Gao et al, (2016):

$$\lambda_{ij} \sim \mathrm{N}(0, rac{1}{\phi_{ij}} - 1), \qquad \phi_{ij} \sim \mathrm{TPB}(0.5, 0.5, rac{1}{\zeta_j} - 1), \ \zeta_j \sim \mathrm{TPB}(0.5, 0.5, rac{1}{
ho} - 1), \qquad
ho \sim \mathrm{TPB}(0.5, 0.5,
u)$$

TPB: three parameter beta distribution



Bayesian estimation

We draw samples from the **posterior** of the causal effects α_{itd} , β_{itd} , γ_{itd} by using **Metropolis-within-Gibbs** that targets

$$\pi \left(\left\{ \boldsymbol{\lambda}_{i}, \left\{ \xi_{id} \right\}_{d=1}^{D_{3}} \right\}_{i=1}^{N}, \left\{ \left\{ \boldsymbol{g}_{td} \right\}_{t=1}^{T}, \boldsymbol{\eta}_{2,d} \right\}_{d=1}^{D_{2}}, \left\{ \left\{ \boldsymbol{h}_{td} \right\}_{t=1}^{T}, \boldsymbol{\eta}_{3,d} \right\}_{d=1}^{D_{3}}, \boldsymbol{\theta} \mid \operatorname{data} \right),$$

where

$$\boldsymbol{\theta} = \left\{ \left\{ \left\{ \left\{ \mathbf{f}_{td} \right\}_{t=1}^{T}, \left\{ \sigma_{id}^{2} \right\}_{i=1}^{N} \right\}_{d=1}^{D_{1}}, \left\{ \left\{ \phi_{ij} \right\}_{d=1}^{N}, \zeta_{j}, \left\{ v_{j,l} \right\}_{\ell=1}^{D}, M_{j} \right\}_{j=1}^{J^{*}}, \rho \right\}$$

and

$$\text{data} = \left\{ \left\{ \left\{ y_{itd} \right\}_{d=1}^{D_1}, \left\{ k_{itd}, n_{itd} \right\}_{d=1}^{D_2}, \left\{ z_{itd}, w_{itd} \right\}_{d=1}^{D_3}, x_{it} \right\}_{t=1}^{T_i} \right\}_{i=1}^{N}.$$

• Problem: Non identifiability of latent factors, $\Lambda F^{\top} = \Lambda Q Q^{-1} F^{\top}$ (Q orthonormal) as well as sign/label-switching problems make popular schemes (e.g. HMC/MALA) to fail.

Bayesian estimation

We draw samples from the **posterior** of the causal effects α_{itd} , β_{itd} , γ_{itd} by using **Metropolis-within-Gibbs** that targets

$$\pi\left(\left\{\boldsymbol{\lambda}_{i},\left\{\xi_{id}\right\}_{d=1}^{D_{3}}\right\}_{i=1}^{N},\left\{\left\{\boldsymbol{g}_{td}\right\}_{t=1}^{T},\boldsymbol{\eta}_{2,d}\right\}_{d=1}^{D_{2}},\left\{\left\{\boldsymbol{h}_{td}\right\}_{t=1}^{T},\boldsymbol{\eta}_{3,d}\right\}_{d=1}^{D_{3}},\boldsymbol{\theta}\mid\mathrm{data}\right),$$

where

$$\boldsymbol{\theta} = \left\{ \left\{ \left\{ \mathbf{f}_{td} \right\}_{t=1}^{T}, \left\{ \sigma_{id}^{2} \right\}_{i=1}^{N} \right\}_{d=1}^{D_{1}}, \left\{ \xi_{d} \right\}_{d=1}^{D_{3}}, \left\{ \left\{ \phi_{ij} \right\}_{i=1}^{N}, \zeta_{j}, \left\{ \mathbf{v}_{j,l} \right\}_{\ell=1}^{D}, M_{j} \right\}_{j=1}^{J^{*}}, \rho \right\}$$

and

$$\text{data} = \left\{ \left\{ \left\{ y_{itd} \right\}_{d=1}^{D_1}, \left\{ k_{itd}, n_{itd} \right\}_{d=1}^{D_2}, \left\{ z_{itd}, w_{itd} \right\}_{d=1}^{D_3}, x_{it} \right\}_{t=1}^{T_i} \right\}_{i=1}^{N}.$$

- Problem: Non identifiability of latent factors, $\Lambda F^{\top} = \Lambda Q Q^{-1} F^{\top}$ (Q orthonormal) as well as sign/label-switching problems make popular schemes (e.g. HMC/MALA) to fail.
- Solution: We employ the (simplified) manifold MALA with a state dependent proposal covariance matrix and we focus on facilitating computations.

Data augmentation to facilitate computations

• We **introduce** $\omega_{itd} \sim PG(n_{itd}, 0)$; the binomial likelihood writes

$$\pi(k_{itd} \mid n_{itd}, \lambda_i, \mathbf{g}_{td}, \eta_{2,d}, \mathbf{x}_{it}, \omega_{itd}) \propto \exp\left\{-\frac{\omega_{itd}}{2} \left(\frac{\kappa_{itd}}{\omega_{itd}} - \lambda_i^{\top} \mathbf{g}_{td} - \eta_{2,d}^{\top} \mathbf{x}_{it}\right)^2\right\},$$

where $\kappa_{itd} = k_{itd} - n_{itd}/2$ (Polson et al., 2013); drawing \mathbf{g}_{td} and $\eta_{2,d}$ is performed with Gibbs steps.

Data augmentation to facilitate computations

• We **introduce** $\omega_{itd} \sim PG(n_{itd}, 0)$; the binomial likelihood writes

$$\pi(k_{itd} \mid n_{itd}, \lambda_i, \mathbf{g}_{td}, \eta_{2,d}, \mathbf{x}_{it}, \omega_{itd}) \propto \exp\left\{-\frac{\omega_{itd}}{2} \left(\frac{\kappa_{itd}}{\omega_{itd}} - \lambda_i^{\top} \mathbf{g}_{td} - \eta_{2,d}^{\top} \mathbf{x}_{it}\right)^2\right\},$$

where $\kappa_{itd} = k_{itd} - n_{itd}/2$ (Polson et al., 2013); drawing \mathbf{g}_{td} and $\eta_{2,d}$ is performed with Gibbs steps.

• For count outcomes we **introduce** $L_{itd} \sim \text{CRT}(z_{itd}, w_{itd}q_{itd}/\xi_d)$; Zhou and Carin (2015) show that

$$\pi\left(z_{itd}, L_{itd} \mid w_{itd}, q_{itd}, \mathbf{x}_{it}, \xi_d\right) = \frac{\xi_d^{z_{itd}} L_{itd} ||S(z_{itd}, L_{itd})||}{(1 + \xi_d)^{z_{itd}} (\log (1 + \xi_d))^{L_{itd}}} \times \operatorname{Pois}\left(L_{itd}; \frac{w_{itd} q_{itd}}{\xi_d} \log (1 + \xi_d)\right).$$

- \checkmark Derivatives wrt $q_{itd} = \exp\left(\boldsymbol{\lambda}_i^{\top} \boldsymbol{h}_{td} + \boldsymbol{\eta}_{3,d}^{\top} \boldsymbol{x}_{it}\right)$ require less computational cost compared to the (non-aumented) NB likelihood.
- ✓ Gibbs step to update L_{itd} .
 - Check Samartsidis et al., 2021 for technical details.

Real data analysis

The data

*Our simulation study shows that joint modelling outperforms univariate models in detecting the intervention.

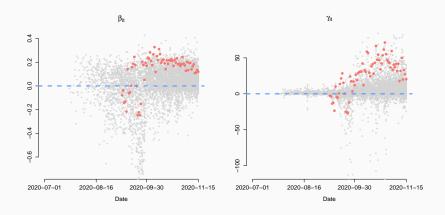
The data

*Our simulation study shows that joint modelling outperforms univariate models in detecting the intervention.

- N = 181 units, T = 138 time points, N₁ = 63 units did not introduce LTP during the study period.
- Three binomial outcomes:
 - ✓ Case completion: proportion of cases completed out of new cases.
 - √ Timeliness: as above, within 48 hours.
 - ✓ *Contact completion*: proportion of contacts completed.
- One count outcome:
 - √ Number of contacts elicited from the completed cases

Case completion: causal effects

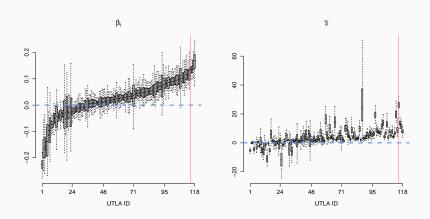
Point estimates (posterior means) of β_{it} and γ_{it} are shown below:



Both β_{it} and γ_{it} are positive on average. However, there is substantial heterogeneity. This is also true for the remaining outcomes

Case completion: average unit effects

For treated units, we define the average effects as $\beta_i = \frac{1}{T - T_i} \sum_{t = T_i + 1}^{T} \beta_{it}$ and $\gamma_i = \frac{1}{T - T_i} \sum_{t = T_i + 1}^{T} \gamma_{it}$. Posterior summaries are shown below:



Discussion

New method for causal inference with time-series observational data

- Can deal with outcomes of mixed type.
- Increases efficiency by jointly modelling multiple outcomes.
- Uncertainty quantification building efficient Bayesian estimation techniques.

Evaluation of LTPs

- On average, LTPs improved case completion and timely case completion.
- LTPs might have had an adverse effect on # of contacts elicited.
- Considerable heterogeneity in the estimates of the causal effects.