A Bayesian multivariate factor analysis model for causal inference using time－series observational data on mixed outcomes

Angelos Alexopoulos
Statistical modelling of epidemic outbreaks，
May 5， 2023

Co-authors

- MRC Biostatistics Unit
- Pantelis Samartsidis
- Shaun R. Seaman
- Daniela De Angelis
- UK Health Security Agency
- Abbie Harrison
- Gareth J. Hughes
- Charlotte Anderson
- Andre Charlet
- Isabel Oliver
- Daniela De Angelis

Introduction: The problem

- Motivation:
\checkmark Quick evaluation of the local tracing partnerships (LTPs) introduced by England's NHS Test \& Trace (TT) programme to improve tracing of Covid-19 cases and their contacts.
\checkmark LTPs main task: trace cases resident in local authorities not successfully traced by TT.
\checkmark Question: impact of LTPs on the effectiveness of TT.

Introduction: The problem

- Motivation:
\checkmark Quick evaluation of the local tracing partnerships (LTPs) introduced by England's NHS Test \& Trace (TT) programme to improve tracing of Covid-19 cases and their contacts.
\checkmark LTPs main task: trace cases resident in local authorities not successfully traced by TT.
\checkmark Question: impact of LTPs on the effectiveness of TT.
- The statistical problem:
\checkmark Estimation of causal effects of intervention (LTPs introduction) based on observational data; judge the effectiveness of TT in terms of four outcomes measured daily.

Introduction: The problem

- Motivation:
\checkmark Quick evaluation of the local tracing partnerships (LTPs) introduced by England's NHS Test \& Trace (TT) programme to improve tracing of Covid-19 cases and their contacts.
\checkmark LTPs main task: trace cases resident in local authorities not successfully traced by TT.
\checkmark Question: impact of LTPs on the effectiveness of TT.
- The statistical problem:
\checkmark Estimation of causal effects of intervention (LTPs introduction) based on observational data; judge the effectiveness of TT in terms of four outcomes measured daily.
- Challenges:
\checkmark Measurements for multiple sample units (local authorities) at multiple time points.
\checkmark Mixed (continuous and discrete) outcomes; some of those with limited amount of information (e.g. low counts).
\checkmark Absence of randomisation in intervention wrt time and units.

Introduction: Outcomes of interest

(a) Case completion

(c) Number of contacts

(b) Timely case completion

(d) Contact completion

Introduction: Contribution

- Tackle limitations of causal factor analysis ("matrix completion"):
\checkmark Extension to a multivariate factor analysis model.
\checkmark Joint modelling of mixed outcomes to increase statistical efficiency.
\checkmark Use Bayesian methods to quantify uncertainty for the causal effects.
- Construction of a bespoke MCMC algorithm.
\checkmark Dealing efficiently with problems caused by non-identifiability of factor models by customising modern samplers.
\checkmark Rely on data augmentation to facilitate sampling from the full conditionals.

Notation and assumptions

- Assume D_{1} continuous, D_{2} binomial and D_{3} count outcomes.
- Notation for binomial outcomes; similarly for remaining outcomes.
- $n_{i t}$: \# of new cases in unit i and day t
- $k_{i t}$: completed cases out of $n_{i t}$
- $p_{i t}$: probability of case completion
- N units total, N_{1} controls. For $i>N_{1}, T_{i}$ is the last day before LTP

Notation and assumptions

- Assume D_{1} continuous, D_{2} binomial and D_{3} count outcomes.
- Notation for binomial outcomes; similarly for remaining outcomes.
- $n_{i t}$: \# of new cases in unit i and day t
- $k_{i t}$: completed cases out of $n_{i t}$
- $p_{i t}$: probability of case completion
- N units total, N_{1} controls. For $i>N_{1}, T_{i}$ is the last day before LTP
- Potential outcomes framework (Holland, 1986)
- Treatment free outcomes $p_{i t}^{(0)}, n_{i t}^{(0)}$ and $k_{i t}^{(0)} \quad$ (all i and t)
- Outcomes under LTP $p_{i t}^{(1)}, n_{i t}^{(1)}$ and $k_{i t}^{(1)} \quad\left(i>N_{1}\right.$ and $\left.t>T_{i}\right)$
- Hence, data are: $\quad\left\{n_{i t}, k_{i t}\right\}= \begin{cases}\left\{n_{i t}^{(1)}, k_{i t}^{(1)}\right\} & i>N_{1} \text { and } t>T_{i} \\ \left\{n_{i t}^{(0)}, k_{i t}^{(0)}\right\} & \text { otherwise }\end{cases}$
- $y_{i t}$ and $z_{i t}$ denote continuous and count outcomes respectively.

Causal effects

For $i>N_{1}$ and $t>T_{i}$, we are interested in estimating

- Effect of LTP on case completion probability

$$
\beta_{i t}=p_{i t}^{(1)}-p_{i t}^{(0)}
$$

- The total number of additional cases completed thanks to LTP

$$
\gamma_{i t}=k_{i t}^{(1)}-\tilde{k}_{i t}^{(0)},
$$

where $\tilde{k}_{i t}^{(0)} \sim \operatorname{Bin}\left(n_{i t}^{(1)}, p_{i t}^{(0)}\right)$.

Causal effects

For $i>N_{1}$ and $t>T_{i}$, we are interested in estimating

- Effect of LTP on case completion probability

$$
\beta_{i t}=p_{i t}^{(1)}-p_{i t}^{(0)}
$$

- The total number of additional cases completed thanks to LTP

$$
\gamma_{i t}=k_{i t}^{(1)}-\tilde{k}_{i t}^{(0)},
$$

where $\tilde{k}_{i t}^{(0)} \sim \operatorname{Bin}\left(n_{i t}^{(1)}, p_{i t}^{(0)}\right)$.

For a count outcome (e.g. \# contacts), we take $\delta_{i t}=z_{i t}^{(1)}-z_{i t}^{(0)}$, unless there is an offset; $\alpha_{i t}=y_{i t}^{(1)}-y_{i t}^{(0)}$ for continuous outcomes.

Causal inference as a missing data problem

To estimate causal effects we need to impute the counterfactuals $p_{i t}^{(0)}$ and $\tilde{k}_{i t}^{(0)} \sim \operatorname{Bin}\left(n_{i t}^{(1)}, p_{i t}^{(0)}\right)$ for $i>N_{1}$ and $t>T_{i}$
(a) Completion probability

(b) Completed cases

Imputation through latent factors

Normal outcomes as an illustration:

$$
y_{i t}^{(0)}=\boldsymbol{\eta}^{\top} \boldsymbol{x}_{i t}+\boldsymbol{\lambda}_{i}^{\top} \boldsymbol{f}_{t}+\varepsilon_{i t}
$$

Some comments:

- The loadings $\boldsymbol{\lambda}_{i} \in \mathbb{R}^{J}$ and factors $\boldsymbol{f}_{t} \in \mathbb{R}^{J}$ are unobserved.
- We fit this model discarding all post-intervention data; for $i>N_{1}$ and $t>T_{i}$, we estimate

$$
\hat{y}_{i t}^{(0)}=\hat{\boldsymbol{\eta}}^{\top} \boldsymbol{x}_{i t}+\hat{\boldsymbol{\lambda}}_{i}^{\top} \hat{\boldsymbol{f}}_{t}
$$

- Implicit causal assumption: $\boldsymbol{x}_{i t}$ and $\boldsymbol{\lambda}_{i}$ account for (observed/unobserved) confounding of the causal effects (Xu, 2017).

Imputation through latent factors

Normal outcomes as an illustration:

$$
y_{i t}^{(0)}=\boldsymbol{\eta}^{\top} \boldsymbol{x}_{i t}+\boldsymbol{\lambda}_{i}^{\top} \boldsymbol{f}_{t}+\varepsilon_{i t}
$$

Some comments:

- The loadings $\boldsymbol{\lambda}_{i} \in \mathbb{R}^{J}$ and factors $\boldsymbol{f}_{t} \in \mathbb{R}^{J}$ are unobserved.
- We fit this model discarding all post-intervention data; for $i>N_{1}$ and $t>T_{i}$, we estimate

$$
\hat{y}_{i t}^{(0)}=\hat{\boldsymbol{\eta}}^{\top} \boldsymbol{x}_{i t}+\hat{\boldsymbol{\lambda}}_{i}^{\top} \hat{\boldsymbol{f}}_{t}
$$

- Implicit causal assumption: $\boldsymbol{x}_{i t}$ and $\boldsymbol{\lambda}_{i}$ account for (observed/unobserved) confounding of the causal effects (Xu, 2017).
- Now we can estimate the causal effect $\alpha_{i t}=y_{i t}^{(1)}-\hat{y}_{i t}^{(0)}$.

A multivariate factor analysis model

For unit i, day t, and outcome d, we assume a factor analysis model

$$
\begin{aligned}
y_{i t d}^{(0)} & \sim \mathrm{N}\left(\mu_{i t d}, \sigma_{i}^{2}\right), \mu_{i t d}=\boldsymbol{\lambda}_{i}^{\top} \boldsymbol{f}_{t d}+\boldsymbol{\eta}_{1, d}^{\top} \boldsymbol{x}_{i t}, \\
k_{i t d}^{(0)} & \sim \operatorname{Bin}\left(n_{i t d}, p_{i t d}\right), \operatorname{logit}\left(p_{i t d}\right)=\boldsymbol{\lambda}_{i}^{\top} \boldsymbol{g}_{t d}+\boldsymbol{\eta}_{2, d}^{\top} \boldsymbol{x}_{i t}, \\
z_{i t d}^{(0)} & \sim \operatorname{NegBin}\left(w_{i t d} q_{i t d} \xi_{d}^{-1},\left(1+\xi_{d}\right)^{-1}\right), \log \left(q_{i t d}\right)=\boldsymbol{\lambda}_{i}^{\top} \boldsymbol{h}_{t d}+\boldsymbol{\eta}_{3, d}^{\top} \boldsymbol{x}_{i t} .
\end{aligned}
$$

- $\boldsymbol{f}_{t d}, \boldsymbol{g}_{t d}, \boldsymbol{h}_{t d} \in \mathbb{R}^{J}$ unobserved factors; $\boldsymbol{\lambda}_{i} \in \mathbb{R}^{J}$ common across outcomes factor loadings for unit $i ; \boldsymbol{x}_{i t} \in \mathbb{R}^{P}$ covariates not affected by the intervention; $\boldsymbol{\eta}_{1, d}, \boldsymbol{\eta}_{2, d}, \boldsymbol{\eta}_{3, d}$ regression coefficients.
- $\boldsymbol{x}_{i t}$ and $\boldsymbol{\lambda}_{i}$ control for potential observed and unobserved confounding respectively.

Prior on factors

- For normal outcome d, we a priori assume that $f_{t d j} \sim \mathrm{~N}\left(0, \psi_{j d}\right)$, $j=1, \ldots, J$.
- Analogous for binomial and NB outcomes.
- To allow loadings to affect any subset of outcomes, we introduce variables M_{j} for the variance of factors $f_{t d j}, g_{t d j}$ and $h_{t d j}$, e.g.

Loading	Normal	Binomial	Neg. Binomial	M_{j}
$j=1$	$\psi_{11} \sim \operatorname{Uni}[0,1]$	$\psi_{12}=1$	$\psi_{13} \sim \operatorname{Uni}[0,1]$	2
$j=2$	$\psi_{21} \sim \operatorname{Uni}[0,1]$	$\psi_{22} \sim \operatorname{Uni}[0,1]$	$\psi_{23}=1$	3
$j=3$	$\psi_{31}=1$	$\psi_{32} \sim \operatorname{Uni}[0,1]$	$\psi_{33} \sim \operatorname{Uni}[0,1]$	1
$j=4$	$\psi_{41}=1$	$\psi_{42} \sim \operatorname{Uni}[0,1]$	$\psi_{43} \sim \operatorname{Uni}[0,1]$	1

Prior on loadings

Uncertainty in J: start with J large, let data determine how many are needed. We follow Gao et al, (2016):

$$
\begin{aligned}
\lambda_{i j} \sim \mathrm{~N}\left(0, \frac{1}{\phi_{i j}}-1\right), \quad \phi_{i j} & \sim \operatorname{TPB}\left(0.5,0.5, \frac{1}{\zeta_{j}}-1\right), \\
\zeta_{j} & \sim \operatorname{TPB}\left(0.5,0.5, \frac{1}{\rho}-1\right), \quad \rho
\end{aligned}
$$

TPB: three parameter beta distribution

TPB density with $\mathrm{a}=\mathrm{b}=0.5$

Bayesian estimation

We draw samples from the posterior of the causal effects $\alpha_{i t d}, \beta_{i t d}, \gamma_{i t d}$ by using Metropolis-within-Gibbs that targets

$$
\pi\left(\left\{\boldsymbol{\lambda}_{i},\left\{\xi_{i d}\right\}_{d=1}^{D_{3}}\right\}_{i=1}^{N},\left\{\left\{\boldsymbol{g}_{t d}\right\}_{t=1}^{T}, \boldsymbol{\eta}_{2, d}\right\}_{d=1}^{D_{2}},\left\{\left\{\boldsymbol{h}_{t d}\right\}_{t=1}^{T}, \boldsymbol{\eta}_{3, d}\right\}_{d=1}^{D_{3}}, \boldsymbol{\theta} \mid \text { data }\right)
$$

where

$$
\boldsymbol{\theta}=\left\{\left\{\left\{\boldsymbol{f}_{t d}\right\}_{t=1}^{T},\left\{\sigma_{i d}^{2}\right\}_{i=1}^{N}\right\}_{d=1}^{D_{1}},\left\{\xi_{d}\right\}_{d=1}^{D_{3}},\left\{\left\{\phi_{i j}\right\}_{i=1}^{N}, \zeta_{j},\left\{v_{j, 1}\right\}_{\ell=1}^{D}, M_{j}\right\}_{j=1}^{J^{*}}, \rho\right\}
$$

and

$$
\text { data }=\left\{\left\{\left\{y_{i t d}\right\}_{d=1}^{D_{1}},\left\{k_{i t d}, n_{i t d}\right\}_{d=1}^{D_{2}},\left\{z_{i t d}, w_{i t d}\right\}_{d=1}^{D_{3}}, x_{i t}\right\}_{t=1}^{T_{i}}\right\}_{i=1}^{N}
$$

- Problem: Non identifiability of latent factors, $\boldsymbol{\Lambda} \boldsymbol{F}^{\top}=\boldsymbol{\Lambda} \boldsymbol{Q} \boldsymbol{Q}^{-1} \boldsymbol{F}^{\top}$ (\boldsymbol{Q} orthonormal) as well as sign/label-switching problems make popular schemes (e.g. HMC/MALA) to fail.

Bayesian estimation

We draw samples from the posterior of the causal effects $\alpha_{i t d}, \beta_{i t d}, \gamma_{i t d}$ by using Metropolis-within-Gibbs that targets

$$
\pi\left(\left\{\boldsymbol{\lambda}_{i},\left\{\xi_{i d}\right\}_{d=1}^{D_{3}}\right\}_{i=1}^{N},\left\{\left\{\boldsymbol{g}_{t d}\right\}_{t=1}^{T}, \boldsymbol{\eta}_{2, d}\right\}_{d=1}^{D_{2}},\left\{\left\{\boldsymbol{h}_{t d}\right\}_{t=1}^{T}, \boldsymbol{\eta}_{3, d}\right\}_{d=1}^{D_{3}}, \boldsymbol{\theta} \mid \text { data }\right)
$$

where

$$
\boldsymbol{\theta}=\left\{\left\{\left\{\boldsymbol{f}_{t d}\right\}_{t=1}^{T},\left\{\sigma_{i d}^{2}\right\}_{i=1}^{N}\right\}_{d=1}^{D_{1}},\left\{\xi_{d}\right\}_{d=1}^{D_{3}},\left\{\left\{\phi_{i j}\right\}_{i=1}^{N}, \zeta_{j},\left\{v_{j, 1}\right\}_{\ell=1}^{D}, M_{j}\right\}_{j=1}^{J^{*}}, \rho\right\}
$$

and

$$
\text { data }=\left\{\left\{\left\{y_{i t d}\right\}_{d=1}^{D_{1}},\left\{k_{i t d}, n_{i t d}\right\}_{d=1}^{D_{2}},\left\{z_{i t d}, w_{i t d}\right\}_{d=1}^{D_{3}}, x_{i t}\right\}_{t=1}^{T_{i}}\right\}_{i=1}^{N} .
$$

- Problem: Non identifiability of latent factors, $\boldsymbol{\Lambda} \boldsymbol{F}^{\top}=\Lambda Q Q^{-1} \boldsymbol{F}^{\top}$ (Q orthonormal) as well as sign/label-switching problems make popular schemes (e.g. HMC/MALA) to fail.
- Solution: We employ the (simplified) manifold MALA with a state dependent proposal covariance matrix and we focus on facilitating computations.

Data augmentation to facilitate computations

- We introduce $\omega_{\text {itd }} \sim \operatorname{PG}\left(n_{i t d}, 0\right)$; the binomial likelihood writes
$\pi\left(k_{i t d} \mid n_{i t d}, \boldsymbol{\lambda}_{i}, \boldsymbol{g}_{t d}, \boldsymbol{\eta}_{2, d}, \boldsymbol{x}_{i t}, \omega_{i t d}\right) \propto \exp \left\{-\frac{\omega_{i t d}}{2}\left(\frac{\kappa_{i t d}}{\omega_{i t d}}-\boldsymbol{\lambda}_{i}^{\top} \boldsymbol{g}_{t d}-\boldsymbol{\eta}_{2, d}^{\top} \boldsymbol{x}_{i t}\right)^{2}\right\}$,
where $\kappa_{i t d}=k_{i t d}-n_{i t d} / 2$ (Polson et al., 2013); drawing $g_{t d}$ and $\boldsymbol{\eta}_{2, d}$ is performed with Gibbs steps.

Data augmentation to facilitate computations

- We introduce $\omega_{\text {itd }} \sim \operatorname{PG}\left(n_{i t d}, 0\right)$; the binomial likelihood writes
$\pi\left(k_{i t d} \mid n_{i t d}, \boldsymbol{\lambda}_{i}, \boldsymbol{g}_{t d}, \boldsymbol{\eta}_{2, d}, \boldsymbol{x}_{i t}, \omega_{i t d}\right) \propto \exp \left\{-\frac{\omega_{i t d}}{2}\left(\frac{\kappa_{i t d}}{\omega_{i t d}}-\boldsymbol{\lambda}_{i}^{\top} \boldsymbol{g}_{t d}-\boldsymbol{\eta}_{2, d}^{\top} \boldsymbol{x}_{i t}\right)^{2}\right\}$, where $\kappa_{i t d}=k_{i t d}-n_{i t d} / 2$ (Polson et al., 2013); drawing $\boldsymbol{g}_{t d}$ and $\boldsymbol{\eta}_{2, d}$ is performed with Gibbs steps.
- For count outcomes we introduce $L_{i t d} \sim \operatorname{CRT}\left(z_{i t d}, w_{i t d} q_{i t d} / \xi_{d}\right)$; Zhou and Carin (2015) show that

$$
\begin{aligned}
\pi\left(z_{i t d}, L_{i t d} \mid w_{i t d}, q_{i t d}, x_{i t}, \xi_{d}\right)= & \frac{\xi_{d}^{z_{i t d}} L_{i t d}!\left|S\left(z_{i t d}, L_{i t d}\right)\right|}{\left(1+\xi_{d}\right)^{z_{i t d}}\left(\log \left(1+\xi_{d}\right)\right)^{L_{i t d}}} \\
& \quad \times \operatorname{Pois}\left(L_{i t d} ; \frac{w_{i t d} q_{i t d}}{\xi_{d}} \log \left(1+\xi_{d}\right)\right) .
\end{aligned}
$$

\checkmark Derivatives wrt $q_{i t d}=\exp \left(\boldsymbol{\lambda}_{i}^{\top} \boldsymbol{h}_{t d}+\boldsymbol{\eta}_{3, d}^{\top} \boldsymbol{x}_{i t}\right)$ require less computational cost compared to the (non-aumented) NB likelihood.
\checkmark Gibbs step to update $L_{i t d}$.

- Check Samartsidis et al., 2021 for technical details.

Real data analysis
*Our simulation study shows that joint modelling outperforms univariate models in detecting the intervention.

The data

*Our simulation study shows that joint modelling outperforms univariate models in detecting the intervention.

- $N=181$ units, $T=138$ time points, $N_{1}=63$ units did not introduce LTP during the study period.
- Three binomial outcomes:
\checkmark Case completion: proportion of cases completed out of new cases.
\checkmark Timeliness: as above, within 48 hours.
\checkmark Contact completion: proportion of contacts completed.
- One count outcome:
\checkmark Number of contacts elicited from the completed cases

Case completion: causal effects

Point estimates (posterior means) of $\beta_{i t}$ and $\gamma_{i t}$ are shown below:

Both $\beta_{i t}$ and $\gamma_{i t}$ are positive on average. However, there is substantial heterogeneity. This is also true for the remaining outcomes

Case completion: average unit effects

For treated units, we define the average effects as $\beta_{i}=\frac{1}{T-T_{i}} \sum_{t=T_{i}+1}^{T} \beta_{i t}$ and $\gamma_{i}=\frac{1}{T-T_{i}} \sum_{t=T_{i}+1}^{T} \gamma_{i t}$. Posterior summaries are shown below:

Discussion

New method for causal inference with time-series observational data

- Can deal with outcomes of mixed type.
- Increases efficiency by jointly modelling multiple outcomes.
- Uncertainty quantification building efficient Bayesian estimation techniques.

Evaluation of LTPs

- On average, LTPs improved case completion and timely case completion.
- LTPs might have had an adverse effect on \# of contacts elicited.
- Considerable heterogeneity in the estimates of the causal effects.

